Chào mừng quý vị đến với Thư viện tài nguyên dạy học tỉnh Ninh Thuận.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
TS 10 có h dan 20162017

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Đặng Thị Minh Tuyết
Ngày gửi: 14h:23' 11-06-2016
Dung lượng: 2.6 MB
Số lượt tải: 203
Nguồn:
Người gửi: Đặng Thị Minh Tuyết
Ngày gửi: 14h:23' 11-06-2016
Dung lượng: 2.6 MB
Số lượt tải: 203
Số lượt thích:
0 người
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HƯNG YÊN
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2016 – 2017
Môn thi: TOÁN
Câu 1 (2,0 điểm)
Rút gọn biểu thức A =
Giải hệ phương trình
Câu 2 (1,5 điểm)
Tìm tọa dộ điểm A thuộc đồ thị hàm số y = 2x2, biết hoành độ của điểm A bằng 2.
Tìm m để hàm số bậc nhất đồng biến trên R.
Câu 3 (1,5 điểm). Cho phương trình x2 – x – m + 2 = 0 (m là tham số).
Giải phương trình với m = 3
Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn 2x1 + x2 = 5.
Câu 4 (1,5 điểm)
Cho hình trụ có bán kính đường tròn đáy r = 2cm và chiều cao h = 5cm. Tính diện tích xung quanh của hình trụ đó.
Một công ty vận tải dự định điều một số xe tải đểvận chuyển 24 tấn hàng. Thực tế khi đến nơi thì công ty bổ sung thên 2 xe nữa nên mỗi xe chở ít đi 2 tấn so với dự định. Hỏi số xe dự định được điều động là bao nhiêu? Biết số lượng hàng chở ở mỗi xe như nhau và mỗi xe chở một lượt.
Câu 5 (2,5 điểm). Cho đường tròn (O) đường kính AB. Trên tiếp tuyến tại A của đường tròn lấy điểm C sao cho C khác A. Từ C kẻ tiếp tuyến thứ hai CD (D là tiếp điểm) và cát tuyến CMN (M nằm giữa N và C) với đường tròn. Gọi H là giao điểm của AD và CO.
Chứng minh các điểm C, A, O, D cùng nằm trên một đường tròn.
Chứng minh CH.CO = CM.CN
Tiếp tuyến tại Mcuar đường tròn (O) cắt CA, CD thứ tự tại E, F. Đường thẳng vuông góc với OC tạo O cắt CA, CD thứ tự tại P, Q. Chứng minh PE + QF PQ.
Câu 6 (1,0 điểm). Cho các số thực dương a, b, c thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức .
Câu 6 : Với a,b,c là các số dương và
Ta có mà
Nên
Suy ra
Tương tự ;
Do đó
Mặt khác ta có
Nên
Áp dụng bất đẳng thức ta có:
Suy ra . Dấu = khi a = b = c = .Vậy MinP = khi và chỉ khi
SỞ GD-ĐT QUẢNG BÌNH KỲ THI TUYỂN VÀO LỚP 10 THPT
NĂM HỌC 2016 - 2017
Câu 1(2.0điểm). Cho biểu thức B= với b>0 và b 1
Rút gọn biểu thức B.
Tìm các giá trị của b để B= 1.
Câu 2(1,5 điểm). a) Giải hệ phương trình sau:
b)Cho h số bậc nhất y = (n-1)x + 3 (n là tham số). Tìm các giá trị của n để hsố đồng biến.
Câu 3(2.0điểm). Cho phương trình x2 – 6x + n = 0 (1) (n là tham số).
Giải phương trình (1) khi n = 5
Tìm n để phương trình (1) có hai nghiệm x1, x2 thoả mãn mãn
Câu 4(1.0điểm). Cho hai số thực không âm x, y thỏa mãn .
Chứng minh rằng
Câu 5(3.5điểm). Cho đường tròn tâm O ,bán kính R và N là một điểm nằm bên ngoài đường tròn. Từ N kẻ hai tiếp tuyến NA, NB với đường tròn (O) (A, B là hai tiếp điểm).
Gọi E là giao điểm của AB và ON.
a) Chứng minh tứ giác NAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và NE biết ON = 5cm và R = 3 cm.
c) Kẻ ta Nx nằm trong góc ANO cắt đường tròn tại hai điểm phân biệt C và D ( C nằm giữa N và D). Chứng minh rằng
Xét vuông tại A có AE là đường cao nên NA2 = NE.NO (1)
Xét và có: chung; (Góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC)
Nên đồng dạng với (g-g)
hay NA2 = NC.ND (2)
Từ (1) và (2) suy ra NE.NO = NC.ND
Xét và có chung mà (c/m trên)
Nên đồng dạng với (c-g-c)
HƯNG YÊN
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2016 – 2017
Môn thi: TOÁN
Câu 1 (2,0 điểm)
Rút gọn biểu thức A =
Giải hệ phương trình
Câu 2 (1,5 điểm)
Tìm tọa dộ điểm A thuộc đồ thị hàm số y = 2x2, biết hoành độ của điểm A bằng 2.
Tìm m để hàm số bậc nhất đồng biến trên R.
Câu 3 (1,5 điểm). Cho phương trình x2 – x – m + 2 = 0 (m là tham số).
Giải phương trình với m = 3
Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn 2x1 + x2 = 5.
Câu 4 (1,5 điểm)
Cho hình trụ có bán kính đường tròn đáy r = 2cm và chiều cao h = 5cm. Tính diện tích xung quanh của hình trụ đó.
Một công ty vận tải dự định điều một số xe tải đểvận chuyển 24 tấn hàng. Thực tế khi đến nơi thì công ty bổ sung thên 2 xe nữa nên mỗi xe chở ít đi 2 tấn so với dự định. Hỏi số xe dự định được điều động là bao nhiêu? Biết số lượng hàng chở ở mỗi xe như nhau và mỗi xe chở một lượt.
Câu 5 (2,5 điểm). Cho đường tròn (O) đường kính AB. Trên tiếp tuyến tại A của đường tròn lấy điểm C sao cho C khác A. Từ C kẻ tiếp tuyến thứ hai CD (D là tiếp điểm) và cát tuyến CMN (M nằm giữa N và C) với đường tròn. Gọi H là giao điểm của AD và CO.
Chứng minh các điểm C, A, O, D cùng nằm trên một đường tròn.
Chứng minh CH.CO = CM.CN
Tiếp tuyến tại Mcuar đường tròn (O) cắt CA, CD thứ tự tại E, F. Đường thẳng vuông góc với OC tạo O cắt CA, CD thứ tự tại P, Q. Chứng minh PE + QF PQ.
Câu 6 (1,0 điểm). Cho các số thực dương a, b, c thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức .
Câu 6 : Với a,b,c là các số dương và
Ta có mà
Nên
Suy ra
Tương tự ;
Do đó
Mặt khác ta có
Nên
Áp dụng bất đẳng thức ta có:
Suy ra . Dấu = khi a = b = c = .Vậy MinP = khi và chỉ khi
SỞ GD-ĐT QUẢNG BÌNH KỲ THI TUYỂN VÀO LỚP 10 THPT
NĂM HỌC 2016 - 2017
Câu 1(2.0điểm). Cho biểu thức B= với b>0 và b 1
Rút gọn biểu thức B.
Tìm các giá trị của b để B= 1.
Câu 2(1,5 điểm). a) Giải hệ phương trình sau:
b)Cho h số bậc nhất y = (n-1)x + 3 (n là tham số). Tìm các giá trị của n để hsố đồng biến.
Câu 3(2.0điểm). Cho phương trình x2 – 6x + n = 0 (1) (n là tham số).
Giải phương trình (1) khi n = 5
Tìm n để phương trình (1) có hai nghiệm x1, x2 thoả mãn mãn
Câu 4(1.0điểm). Cho hai số thực không âm x, y thỏa mãn .
Chứng minh rằng
Câu 5(3.5điểm). Cho đường tròn tâm O ,bán kính R và N là một điểm nằm bên ngoài đường tròn. Từ N kẻ hai tiếp tuyến NA, NB với đường tròn (O) (A, B là hai tiếp điểm).
Gọi E là giao điểm của AB và ON.
a) Chứng minh tứ giác NAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và NE biết ON = 5cm và R = 3 cm.
c) Kẻ ta Nx nằm trong góc ANO cắt đường tròn tại hai điểm phân biệt C và D ( C nằm giữa N và D). Chứng minh rằng
Xét vuông tại A có AE là đường cao nên NA2 = NE.NO (1)
Xét và có: chung; (Góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC)
Nên đồng dạng với (g-g)
hay NA2 = NC.ND (2)
Từ (1) và (2) suy ra NE.NO = NC.ND
Xét và có chung mà (c/m trên)
Nên đồng dạng với (c-g-c)
 






Các ý kiến mới nhất