Chào mừng quý vị đến với Thư viện tài nguyên dạy học tỉnh Ninh Thuận.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
TS vào 10 Hải Dương (2013-2014)

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Phạm Thanh Hải
Ngày gửi: 07h:09' 20-06-2013
Dung lượng: 122.5 KB
Số lượt tải: 339
Nguồn:
Người gửi: Phạm Thanh Hải
Ngày gửi: 07h:09' 20-06-2013
Dung lượng: 122.5 KB
Số lượt tải: 339
Số lượt thích:
0 người
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG
KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
NGUYỄN TRÃI NĂM HỌC 2013- 2014
Môn thi: TOÁN (không chuyên)
Thời gian làm bài: 120 phút
Ngày thi 19 tháng 6 năm 2013
Đề thi gồm : 01 trang
Câu I (2,0 điểm)
1) Giải phương trình (2x + 1)2 + (x – 3)2 = 10
2) Xác định các hệ số m và n biết hệ phương trình có nghiệm (1; -2)
Câu II ( 2,0 điểm)
Rút gọn biểu thức với
Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm thì trong 6 ngày xong
việc. Nếu họ làm riêng thì người thợ thứ nhất hoàn thành công việc chậm hơn người thợ thứ hai là 9 ngày. Hỏi nếu làm riêng thì mỗi người thợ phải làm trong bao nhiêu ngày để xong việc.
Câu III (2,0 điểm)
Cho phương trình
Chứng minh rằng phương trình luôn có hai nghiệm x1; x2 với mọi m.
Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện:
Câu IV (3,0 điểm)
Cho ba điểm A, B, C cố định và thẳng hàng theo thứ tự đó. Đường tròn (O; R) thay đổi đi qua B và C sao cho O không thuộc BC. Từ điểm A vẽ hai tiếp tuyến AM và AN với đường tròn (O). Gọi I là trung điểm của BC, E là giao điểm của MN và BC, H là giao điểm của đường thẳng OI và đường thẳng MN.
1) Chứng minh bốn điểm M, N, O, I cùng thuộc một đường tròn.
2) Chứng minh OI.OH = R2.
3) Chứng minh đường thẳng MN luôn đi qua một điểm cố định.
Câu V ( 1,0 điểm)
Cho tam giác ABC có chu vi bằng 2. Ký hiệu a, b, c là độ dài ba cạnh của tam giác. Tìm giá trị nhỏ nhất của biểu thức .
----------------------- Hết ----------------------
Họ và tên thí sinh : ................................................ Số báo danh .....................................
Chữ ký của giám thị 1 ........................................... Chữ ký của giám thị 2 ..........................
Hướng dẫn câu III:
2) phương trình có hai nghiệm x1; x2 nên
Theo định lí Vi-et ta có :
Theo bài ra ta có :
Hướng dẫn câu IVc :
+ g-g)
+ g-g)
AB.AC = AI.AE (*)
Do A, B, C cố định nên trung điểm I của BC cố định
nên từ (*) suy ra E cố định.
Vậy đường thẳng MN luôn đi qua điểm E cố định
Hướng dẫn giải câu V:
Với a, b, c là độ dài ba cạnh của tam giác có chu vi bằng 2 nên .
Đặt do a, b, c là độ dài ba cạnh của tam giác nên .
Suy ra (do ) và .
Khi đó
Ta có:
Dấu “=” xảy ra khi
Khi đó: vuông
Vậy vuông .
HẢI DƯƠNG
KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
NGUYỄN TRÃI NĂM HỌC 2013- 2014
Môn thi: TOÁN (không chuyên)
Thời gian làm bài: 120 phút
Ngày thi 19 tháng 6 năm 2013
Đề thi gồm : 01 trang
Câu I (2,0 điểm)
1) Giải phương trình (2x + 1)2 + (x – 3)2 = 10
2) Xác định các hệ số m và n biết hệ phương trình có nghiệm (1; -2)
Câu II ( 2,0 điểm)
Rút gọn biểu thức với
Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm thì trong 6 ngày xong
việc. Nếu họ làm riêng thì người thợ thứ nhất hoàn thành công việc chậm hơn người thợ thứ hai là 9 ngày. Hỏi nếu làm riêng thì mỗi người thợ phải làm trong bao nhiêu ngày để xong việc.
Câu III (2,0 điểm)
Cho phương trình
Chứng minh rằng phương trình luôn có hai nghiệm x1; x2 với mọi m.
Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện:
Câu IV (3,0 điểm)
Cho ba điểm A, B, C cố định và thẳng hàng theo thứ tự đó. Đường tròn (O; R) thay đổi đi qua B và C sao cho O không thuộc BC. Từ điểm A vẽ hai tiếp tuyến AM và AN với đường tròn (O). Gọi I là trung điểm của BC, E là giao điểm của MN và BC, H là giao điểm của đường thẳng OI và đường thẳng MN.
1) Chứng minh bốn điểm M, N, O, I cùng thuộc một đường tròn.
2) Chứng minh OI.OH = R2.
3) Chứng minh đường thẳng MN luôn đi qua một điểm cố định.
Câu V ( 1,0 điểm)
Cho tam giác ABC có chu vi bằng 2. Ký hiệu a, b, c là độ dài ba cạnh của tam giác. Tìm giá trị nhỏ nhất của biểu thức .
----------------------- Hết ----------------------
Họ và tên thí sinh : ................................................ Số báo danh .....................................
Chữ ký của giám thị 1 ........................................... Chữ ký của giám thị 2 ..........................
Hướng dẫn câu III:
2) phương trình có hai nghiệm x1; x2 nên
Theo định lí Vi-et ta có :
Theo bài ra ta có :
Hướng dẫn câu IVc :
+ g-g)
+ g-g)
AB.AC = AI.AE (*)
Do A, B, C cố định nên trung điểm I của BC cố định
nên từ (*) suy ra E cố định.
Vậy đường thẳng MN luôn đi qua điểm E cố định
Hướng dẫn giải câu V:
Với a, b, c là độ dài ba cạnh của tam giác có chu vi bằng 2 nên .
Đặt do a, b, c là độ dài ba cạnh của tam giác nên .
Suy ra (do ) và .
Khi đó
Ta có:
Dấu “=” xảy ra khi
Khi đó: vuông
Vậy vuông .
 






Các ý kiến mới nhất